
SMART CONTRACT CODE
REVIEW AND SECURITY

ANALYSIS REPORT

Customer : JetFuel Team
Prepared on : 08/03/2021
Platform: Binance Smart Chain
Language: Solidity
Audit Type: Standard

audit@etherauthority.io

Table of contents

Document 4

Introduction 4

Quick Stats 5

Executive Summary 6

Code Quality 6

Documentation 7

Use of Dependencies 7

AS-IS overview 8

Severity Definitions 11

Audit Findings 11

Conclusion 14

Our Methodology 15

Disclaimers 17

EtherAuthority Limited (www.EtherAuthority.io)

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY CONTAIN

INFORMATION WHICH IS CONFIDENTIAL. WHICH INCLUDES ANY

POTENTIAL VULNERABILITIES AND MALICIOUS CODES WHICH CAN BE

USED TO EXPLOIT THE SOFTWARE. THIS MUST BE REFERRED

INTERNALLY AND ONLY SHOULD BE MADE AVAILABLE TO PUBLIC AFTER

ISSUES ARE RESOLVED.

EtherAuthority Limited (www.EtherAuthority.io)

Document

Name Smart Contract Code Review and Security
Analysis Report for GFORCE

Platform Binance Smart Chain / Solidity

File name 1 GFORCE.sol

MD5 hash FF7300EF3725878077C6350AFF545203

SHA256 hash
84A81AAF0535B7CD3D2FB1F9FA70590F837
71271FF03C74E7895BB5C87B97821

Introduction
We were contracted by the JetFuel team to perform the Security audit of the smart
contracts code. The audit has been performed using manual analysis as well as
using automated software tools. This report presents all the findings regarding the
audit performed on 08/03/2021.

Audit type was Standard Audit. Which means one senior auditor performing an audit
for 2 days. So, this audit is concluded based on standard audit scope. And because
the use case scenarios are unlimited, it is encouraged to perform an Extensive audit
(which is performed by 2 or more auditors for about a week time) to come to a more
solid conclusion.

EtherAuthority Limited (www.EtherAuthority.io)

Quick Stats:

Main
Category

Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Moderated
Function input parameters lack of check Passed
Function input parameters check bypass Passed

Function access control lacks
management

Passed

Critical operation lacks event log Passed
Human/contract checks bypass Passed
Random number generation/use

vulnerability
N/A

Fallback function misuse Passed
Race condition Passed

Logical vulnerability Passed
Other programming issues Passed

Code
Specification

Function visibility not explicitly declared Passed
Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Other code specification issues Passed
Gas

Optimization
Assert() misuse Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

“Out of Gas” Attack Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

EtherAuthority Limited (www.EtherAuthority.io)

Executive Summary
According to the standard audit assessment, Customer`s solidity smart contract is
well secured. Again, it is recommended to perform an Extensive audit assessment
to bring a more assured conclusion.

You are here

We used various tools like SmartDec, Mythril, Slither and Remix IDE. At the same
time this finding is based on critical analysis of the menual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is
presented in AS-IS section and all found issues can be found in the Audit overview
section.

We found 0 high, 0 medium and 0 low and some very low level issues.

Code Quality
GFORCE protocol consists of one smart contract file. These smart contracts also

contain Libraries, Smart contract inherits and Interfaces. These are compact and

well written contracts.

The libraries in the GFORCE protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods

can be reused many times by other contracts in the GFORCE protocol.

The GFORCE team has not provided scenario and unit test scripts, which would

help to determine the integrity of the code in an automated way.

EtherAuthority Limited (www.EtherAuthority.io)

Overall, some code parts are well commented, while rest are not. Commenting can

provide rich documentation for functions, return variables and more. Use of

Ethereum Natural Language Specification Format (NatSpec) for commenting is

recommended.

Documentation

We were given a GFORCE contract in the form of a file. The hash of that file is

mentioned above in the table.

As mentioned above, most code parts are not well commented. so anyone can not

quickly understand the programming flow as well as complex code logic. Comments

are very helpful in understanding the overall architecture of the protocol. It also

provided a clear overview of the system components, including helpful details, like

the lifetime of the background script.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure

that are based on well known industry standard open source projects. And even

core code blocks are written well and systematically.

Apart from libraries, GFORCE smart contract depends on external smart contracts

like PancakeV2Router, PancakeV2Factory, LpStakingPool, JetsStakingPool, etc.

smart contracts.

EtherAuthority Limited (www.EtherAuthority.io)

AS-IS overview

GFORCE.sol contract overview

GFORCE is a BEP20 token smart contract. It has a refraction feature, which means
1% of every transaction is distributed to all the token holders. It also has in-built
swapping functions. Following are the main components whose details are explicitly
recorded.

(1) Libraries
(a) SafeMath
(b) Address

(2) Interfaces
(a) IERC20
(b) IPancakeV2Factory
(c) IPancakeV2Pair
(d) IPancakeV2Router01
(e) IPancakeV2Router02

(3) Abstracts
(a) Context

(4) External Contracts
(a) Ownable
(b) Balancer
(c) Swaper

(5) Usages
(a) SafeMath for uint256
(b) Address for address

(6) Events
(a) event FeeDecimalsUpdated(uint256 taxFeeDecimals);
(b) event TaxFeeUpdated(uint256 taxFee);
(c) event LockFeeUpdated(uint256 lockFee);
(d) event MaxTxAmountUpdated(uint256 maxTxAmount);
(e) event PoolAndPairTokenUpdated(address indexed poolAddress, address

indexed pairTokenAddress);

EtherAuthority Limited (www.EtherAuthority.io)

(f) event StakingPoolUpdated(address indexed lpStakingPool,address indexed
jetsStakingPool);

(g) event TradingEnabled();
(h) event SwapAndLiquifyEnabledUpdated(bool enabled);
(i) event SwapAndLiquify(address indexed pairTokenAddress, uint256

tokensSwapped, uint256 pairTokenReceived, uint256 tokensIntoLiqudity);
(j) event Rebalance(uint256 tokenBurnt);
(k) event MinTokensBeforeSwapUpdated(uint256 minTokensBeforeSwap);
(l) event AutoSwapCallerFeeUpdated(uint256 autoSwapCallerFee);

(7)Functions
Sl. Function Type Observation Conclusion Score
1 constructor write Passed No Issue Passed
2 name read Passed No Issue Passed
3 symbol read Passed No Issue Passed
4 decimals read Passed No Issue Passed
5 totalSupply read Passed No Issue Passed
6 balanceOf read Passed No Issue Passed
7 transfer write Passed No Issue Passed
8 allowance read Passed No Issue Passed
9 approve write Passed No Issue Passed

10 transferFrom write Passed No Issue Passed
11 increaseAllowance write Passed No Issue Passed
12 decreaseAllowance write Passed No Issue Passed
13 isExcluded read Passed No Issue Passed
14 isWhiteListed read Passed No Issue Passed
15 materialize write Overflow

happens
initially

Overflow is
resolved after

first token
transfer

Passed

16 reflectionFromToken read Passed No Issue Passed
tokenFromReflection read Passed No Issue Passed
excludeAccount write Passed No Issue Passed
includeAccount write Infinite loop

possibility
Owner must
exclude 100

wallets or less

Passed

includeWhiteList write Passed No Issue Passed
excludeWhiteList write Passed No Issue Passed
_approve write Passed No Issue Passed
_transfer write Passed No Issue Passed
swapAndLiquifyForEth write Passed No Issue Passed
swapTokensForEth write Passed No Issue Passed
addLiquidityForEth write Passed No Issue Passed

EtherAuthority Limited (www.EtherAuthority.io)

swapAndLiquifyForToke
ns

write Passed No Issue Passed

addLiquidityForTokens write Passed No Issue Passed
_transferStandard write Passed No Issue Passed
_transferToExcluded write Passed No Issue Passed
_transferFromExcluded write Passed No Issue Passed
_transferBothExcluded write Passed No Issue Passed
_reflectFee write Passed No Issue Passed
_getValues read Passed No Issue Passed
_getTValues read Passed No Issue Passed
_getRValues read Passed No Issue Passed
_getRate read Passed No Issue Passed
_getCurrentSupply read Infinite loop

possibility
Owner must
exclude 100

wallets or less

Passed

getCurrentPoolAddress read Passed No Issue Passed
getCurrentPairTokenAd
dress

read Passed No Issue Passed

_setFeeDecimals write Passed No Issue Passed
_setTaxFee write Passed No Issue Passed
_setLockFee write Passed No Issue Passed
_setMaxTxAmount write Passed No Issue Passed
_setMinTokensBeforeS
wap

write Passed No Issue Passed

_setAutoSwapCallerFe
e

write Passed No Issue Passed

updateSwapAndLiquify
Enabled

write Passed No Issue Passed

_updatePoolAndPairTo
ken

write Passed No Issue Passed

_updateStakingPool write Passed No Issue Passed
_enableTrading write Passed No Issue Passed

EtherAuthority Limited (www.EtherAuthority.io)

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to tokens loss etc.
High-level vulnerabilities are difficult to exploit;

High however, they also have significant impact on smart
contract execution, e.g. public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose
Low-level vulnerabilities are mostly related to

Low outdated, unused etc. code snippets, that can’t have
significant impact on execution

Lowest / Code Lowest-level vulnerabilities, code style violations
Style / Best and info statements can’t affect smart contract

Practice execution and can be ignored.

Audit Findings

Critical

No critical severity vulnerabilities were found.

High

No high severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

No Low severity vulnerabilities were found.

EtherAuthority Limited (www.EtherAuthority.io)

Very Low

(1) Infinite loop possibility:

If the _excluded array length is increased, then it might hit the gas limit. Another
function also would be affected with this is: includeAccount

Solution: please keep this excluded wallet as minimum as possible. Ideally
under 100 wallets.

(2) Overflow possibility:

When the smart contract is deployed, then calling this function with full token
supply gives overflow.

EtherAuthority Limited (www.EtherAuthority.io)

This issue is resolved after its first token transfer. This is because its relevant
variables would be updated and this is not happening again.

Solution: Please do some token transfers after contract deployment, before
going to public launch.

(3) Ownership transfer function. It is good practice to implement acceptOwnership
style to prevent the ownership sent to invalid address by human error. Code flow
similar to below:

(4) User latest solidity version while contract deployment to prevent any compiler
version level bugs.

Discussion:

(1) Overpowered functions: There are some functions which are authorised persons

(excludeAccount, includeAccount, includeWhiteList, etc) only. And it would be

troublesome if the private key of that owner wallet would be compromised.

(2) Approve of ERC20 standard: This can be used to front run. From the client side,

only use this function to change the allowed amount to 0 or from 0 (wait till

transaction is mined and approved). This should be done from the client side.

EtherAuthority Limited (www.EtherAuthority.io)

Conclusion

We were given contract files. And we have used all possible tests based on given

objects as files. The contracts are written so systematic, that we did not find any

major issues. So it is good to go for production.

Since possible test cases can be unlimited for such extensive smart contract

protocol, so we provide no such guarantee of future outcomes. We have used all the

latest static tools and manual observations to cover maximum possible test cases to

scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high level description of functionality was presented

in As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the

reviewed code.

Security state of the reviewed contract, based on standard audit procedure scope is

“Well Secured”.

EtherAuthority Limited (www.EtherAuthority.io)

Our Methodology

We like to work with a transparent process and make our reviews a collaborative

effort. The goals of our security audits are to improve the quality of systems we

review and aim for sufficient remediation to help protect users. The following is

the methodology we use in our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code

logic, error handling, protocol and header parsing, cryptographic errors, and

random number generators. We also watch for areas where more defensive

programming could reduce the risk of future mistakes and speed up future audits.

Although our primary focus is on the in-scope code, we examine dependency

code and behavior when it is relevant to a particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction,

and whitebox penetration testing. We look at the project's web site to get a high

level understanding of what functionality the software under review provides. We

then meet with the developers to gain an appreciation of their vision of the

software. We install and use the relevant software, exploring the user interactions

and roles. While we do this, we brainstorm threat models and attack surfaces.

We read design documentation, review other audit results, search for similar

projects, examine source code dependencies, skim open issue tickets, and

generally investigate details other than the implementation.

EtherAuthority Limited (www.EtherAuthority.io)

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a

potential issue is discovered, we immediately create an Issue entry for it in this

document, even though we have not yet verified the feasibility and impact of the

issue. This process is conservative because we document our suspicions early

even if they are later shown to not represent exploitable vulnerabilities. We

generally follow a process of first documenting the suspicion with unresolved

questions, then confirming the issue through code analysis, live experimentation,

or automated tests. Code analysis is the most tentative, and we strive to provide

test code, log captures, or screenshots demonstrating our confirmation. After this

we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally

we suggest the requirements for remediation engineering for future releases. The

mitigation and remediation recommendations should be scrutinized by the

developers and deployment engineers, and successful mitigation and

remediation is an ongoing collaborative process after we deliver our report, and

before the details are made public.

EtherAuthority Limited (www.EtherAuthority.io)

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best
industry practices at the date of this report, in relation to: cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report, (Source Code); the Source Code compilation,
deployment and functionality (performing the intended functions).

Due to the fact that the total number of test cases are unlimited, so the audit
makes no statements or warranties on security of the code. It also cannot be
considered as a sufficient assessment regarding the utility and safety of the code,
bugfree status or any other statements of the contract. While we have done our
best in conducting the analysis and producing this report, it is important to note
that you should not rely on this report only. We also suggest to conduct a bug
bounty program to confirm the high level of security of this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have their own vulnerabilities that can lead to hacks. Thus, the audit
can’t guarantee explicit security of the audited smart contracts.

EtherAuthority Limited (www.EtherAuthority.io)

EtherAuthority Limited (www.EtherAuthority.io)

